Femtosecond resolution timing jitter correction on a TW scale Ti:sapphire laser system for FEL pump-probe experiments.

نویسندگان

  • Marta Csatari Divall
  • Patrick Mutter
  • Edwin J Divall
  • Christoph P Hauri
چکیده

Intense ultrashort pulse lasers are used for fs resolution pump-probe experiments more and more at large scale facilities, such as free electron lasers (FEL). Measurement of the arrival time of the laser pulses and stabilization to the machine or other sub-systems on the target, is crucial for high time-resolution measurements. In this work we report on a single shot, spectrally resolved, non-collinear cross-correlator with sub-fs resolution. With a feedback applied we keep the output of the TW class Ti:sapphire amplifier chain in time with the seed oscillator to ~3 fs RMS level for several hours. This is well below the typical pulse duration used at FELs and supports fs resolution pump-probe experiments. Short term jitter and long term timing drift measurements are presented. Applicability to other wavelengths and integration into the timing infrastructure of the FEL are also covered to show the full potential of the device.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-color FEL amplifier for femtosecond-resolution pump-probe experiments with GW-scale X-ray and optical pulses

Pump-probe experiments combining pulses from a X-ray FEL and an optical femtosecond laser are very attractive for sub-picosecond time-resolved studies. Since the synchronization between the two independent light sources to an accuracy of 100 fs is not yet solved, it is proposed to derive both femtosecond radiation pulses from the same electron bunch but from two insertion devices. This eliminat...

متن کامل

Noise Characterization of Sub-10-fs Ti:Sapphire Oscillators

A complete noise characterization of sub-10-fs Ti:sapphire oscillators in terms of pulse energy fluctuations, timing jitter, and the coupling between these two noise components is presented for the first time. The noise performance of a self-mode-locked mirror-dispersion-controlled (MDC) oscillator pumped by an Ar–ion laser and, alternatively, a diodepumped laser (Millennia, Spectra Physics Inc...

متن کامل

Direct mapping of recoil in the ion-pair dissociation of molecular oxygen by a femtosecond depletion method.

Time-resolved dynamics of the photodissociation of molecular oxygen, O(2), via the (3)Sigma(u) (-) ion-pair state have been studied with femtosecond time resolution using a pump-probe scheme in combination with velocity map imaging of the resulting O(+) and O(-) ions. The fourth harmonic of a femtosecond titanium-sapphire (Ti:sapphire) laser (lambda approximately 205 nm) was found to cause thre...

متن کامل

A Simple Method for Timing an Xfel Source to High-power Lasers

We propose a technique for timing an XFEL to a highpower laser with femtosecond accuracy. The same electron bunch is used to produce an XFEL pulse and an ultrashort optical pulse that are, thus, naturally synchronized. Cross-correlation techniques will yield the relative jitter between the optical pulse (and, thus, the XFEL pulse) and a pulse from an external pump-laser with femtosecond resolut...

متن کامل

Optical flywheels with attosecond jitter

It has been known for some time that the steady-state pulse propagating inside a mode-locked laser is the optical equivalent of a mechanical flywheel. By measuring the timing error spectrum between phase-locked optical pulse trains emitted from two nearly identical 10 fs Ti:sapphire lasers, we demonstrate a record low integrated timing error of less than 13 as, measured from d.c. to the Nyquist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 23 23  شماره 

صفحات  -

تاریخ انتشار 2015